Mutational analysis of synaptobrevin transmembrane domain oligomerization.
نویسندگان
چکیده
Synaptobrevin 2 is thought to facilitate fusion of synaptic vesicles with the presynaptic membrane through formation of a soluble NSF attachment protein receptor complex (SNARE) with syntaxin 1a and a synaptosomal associated protein of 25 kDa (SNAP-25). Previous reports have described a homodimer of synaptobrevin that is dependent on the transmembrane domain. However, these reports disagree about the magnitude of dimerization, which makes it difficult to assess the biological relevance of this interaction. We used SDS-PAGE and the TOXCAT genetic assay to reexamine the homodimerization of the synaptobrevin transmembrane domain in detergents and the Escherichia coli inner membrane, respectively. To gauge the magnitude of synaptobrevin homodimerization, we used the well-characterized glycophorin A homodimer as a positive standard. In contrast to previous studies, we found synaptobrevin homodimerization in E. coli is very weak when compared to glycophorin A. Recombinant synaptobrevin forms a small amount of dimer and higher order oligomers in detergents that are highly dependent on solublization conditions. We estimate a dissociation constant of 10 mM for synaptobrevin dimerization in detergent. Thus, the dimerization of synaptobrevin in membranes is very weak, questioning any possible functional role for this association in vivo.
منابع مشابه
The transmembrane domain of syntaxin 1A is critical for cytoplasmic domain protein-protein interactions.
Assembly of the plasma membrane proteins syntaxin 1A and SNAP-25 with the vesicle protein synaptobrevin is a critical step in neuronal exocytosis. Syntaxin is anchored to the inner face of presynaptic plasma membrane via a single C-terminal membrane-spanning domain. Here we report that this transmembrane domain plays a critical role in a wide range of syntaxin protein-protein interactions. Trun...
متن کاملStructural determinants of synaptobrevin 2 function in synaptic vesicle fusion.
Deletion of synaptobrevin/vesicle-associated membrane protein, the major synaptic vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (R-SNARE), severely decreases but does not abolish spontaneous and evoked synaptic vesicle exocytosis. We now show that the closely related R-SNARE protein cellubrevin rescues synaptic transmission in synaptobrevin-deficient neurons but ...
متن کاملModulation of Innate Immune Signalling by Lipid-Mediated MAVS Transmembrane Domain Oligomerization
RIG-I-like receptors detect viral RNA in infected cells and promote oligomerization of the outer mitochondrial membrane protein MAVS to induce innate immunity to viral infection through type I interferon production. Mitochondrial reactive oxygen species (mROS) have been shown to enhance anti-viral MAVS signalling, but the mechanisms have remained obscure. Using a biochemical oligomerization-rep...
متن کاملTransmembrane domain-dependent functional oligomerization of syndecans.
Cell surface adhesion receptors of the syndecan family initiate intracellular events through clustering of receptors. This crucial clustering occurs through receptor dimerization or oligomerization, which is mediated by receptor transmembrane domains. However, the exact role of the transmembrane domain during receptor activation is not fully understood. Researchers have not yet determined wheth...
متن کاملDynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation.
The synaptic vesicle protein synaptobrevin engages with syntaxin and SNAP-25 to form the SNARE complex, which drives membrane fusion in neuronal exocytosis. In the SNARE complex, the SNARE motif of synaptobrevin forms a 55-residue helix, but it has been assumed to be mostly unstructured in its prefusion form. NMR data for full-length synaptobrevin in dodecylphosphocholine micelles reveals two t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 41 52 شماره
صفحات -
تاریخ انتشار 2002